$R_{\rm int} = 0.025$

3 standard reflections

every 97 reflections

intensity decay: none

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(4-Chlorophenyl)-2-deoxy-*α*-L-ribopyranosylamine

Pei-Hua Shang,^a Chang-Mei Cheng,^a* Yong-Chong Yang,^a Ru-Ji Wang^b and Yu-Fen Zhao^a

^aKey Laboratory for Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and ^bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China Correspondence e-mail: shangpeihua05@mail.tsinghua.org.cn

Received 19 March 2008; accepted 23 April 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.084; data-to-parameter ratio = 14.8.

In the crystal structure of the title compound, $C_{11}H_{14}CINO_3$, intermolecular hydrogen bonds link molecules in the *ab* plane, forming layers that stack along the *c* axis.

Related literature

For related literature, see: Durette *et al.* (1978); Ganem (1966); Katzen (1979); Bridiau *et al.* (2007); Ojala *et al.* (2000).

Experimental

Crystal data	
C ₁₁ H ₁₄ ClNO ₃	V = 1173.2 (3) Å ³
$M_r = 243.68$	Z = 4
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 6.5305 (8) Å	$\mu = 0.32 \text{ mm}^{-1}$
b = 7.9857 (9) Å	T = 295 (2) K
c = 22.496 (3) Å	$0.4 \times 0.2 \times 0.1 \text{ mm}$

Data collection

Bruker P4 diffractometer Absorption correction: none 2581 measured reflections 2172 independent reflections 1690 reflections with $I > 2\sigma(I)$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 & \Delta\rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3} \\ wR(F^2) &= 0.084 & \Delta\rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3} \\ S &= 1.03 & {\rm Absolute \ structure: \ Flack \ (1983),} \\ 2172 \ {\rm reflections} & 880 \ {\rm Friedel \ pairs} \\ 147 \ {\rm parameters} & {\rm Flack \ parameter: \ 0.09 \ (11)} \\ {\rm H-atom \ parameters \ constrained} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2C\cdots O3^{i}$	0.82	1.93	2.739 (2)	170
$O3-H3B\cdots O1^{i}$ $N1-H1B\cdots O2^{ii}$	0.82 0.92	1.98 2.08	2.797 (2) 2.994 (3)	175 173

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to the National Science Foundation of China (project grant No. 20132020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2090).

References

- Bridiau, N., Benmansour, M., Legoy, M. D. & Maugard, T. (2007). *Tetrahedron*, **63**. 4178–4183.
- Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Durette, P. L., Bugianesi, R. L., Ponpipom, M. M., Shen, T. Y., Cascieri, M. A., Glitzer, M. S. & Katzen, H. M. (1978). J. Med. Chem. 21, 854–859.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ganem, B. (1966). Acc. Chem. Res. 29, 340-347.
- Katzen, H. M. (1979). J. Biol. Chem. 254, 2983-2992.
- Ojala, W. H., Oatman, J. M. & Ojala, C. R. (2000). Carbohydr. Res. 326, 104–112.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1317 [doi:10.1107/S1600536808011616]

N-(4-Chlorophenyl)-2-deoxy-*a*-L-ribopyranosylamine

P.-H. Shang, C.-M. Cheng, Y.-C. Yang, R.-J. Wang and Y.-F. Zhao

Comment

N-Alkyl and *N*-aryl glycosylamines have a wide range of biological activities (Katzen *et al.*, 1979; Ganem, 1966), including insulin-like activity (Durette *et al.*, 1978). They are important as junctures in glycoproteins (Ojala *et al.*, 2000). Glycosylamines can exist either in cyclic or acyclic forms depending on reaction conditions and the particular amine used. Stereo-selective syntheses of *N*-aryl-glycosylamines are uncommon, but a one-pot stereoselective synthesis of beta-*N*-aryl-glycosides in aqueous buffers with purification by semi-preparative HPLC has been reported (Nicolas *et al.*, 2007).

Recently, we found that 4-chlorobenzenamine reacted with 2-deoxy-*L*-ribose in methanol and water to give *N*-*p*-chlorophenyl-2-deoxy- α -*L*-ribopyranosylamine as the sole product. Herein we report the synthesis and structure (Fig. 1) of *N*-*p*-chlorophenyl-2-deoxy- α -*L*-ribopyranosylamine.

Experimental

The title compound was synthesized by the reaction of 4-chlorobenzenamine with 2-deoxy-*L*-ribose in a mixture of methanol and water. 4-chlorobenzenamine (0.93 g, 10 mmol) in a little methanol was added to a solution of 2-deoxy-*L*-ribose (1.34 g, 10 mmol) in 20 ml water, the solution was stirred at room temperature overnight. A white solid obtained by filtration was washed with ice water, then cold ether, and was dried under pressure. The solid was *N*-*p*-chlorophenyl-2-deoxy- α -*L*-ribopyranosylamine (yield: 70%). ¹H NMR (300 MHz, DMSO-d₆): δ 1.68 (m, 1H), 1.78 (m, 1H), 3.37 (d, 1H), 3.49 (s, 1H), 3.62 (q, 1H), 3.68 (m, 1H), 4.36 (d, 1H), 4.56 (m, 1H), 4.69 (d, 1H), 6.16 (d, 1H), 6.53 (d, 2H), 6.886 (d, 2H). ¹³C NMR (300 MHz, DMSO-d₆): δ 144.2, 129.2, 125.3, 113.4, 80.3, 68.0, 66.8, 65.7, 34.7, 20.1.

Refinement

H atoms were placed in calculated positions with constrained distances of 0.98 Å (R_3CH), 0.97 Å (R_2CH_2), 0.93 Å (R_2CH), 0.82 Å (OH) and 0.9195 Å (NH). U_{iso}(H) values were set to 1.2U_{eq} of the attached atom.

Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 35% probability level.

N-(4-Chlorophenyl)-2-deoxy- α -L-ribopyranosylamine

Crystal data	
C ₁₁ H ₁₄ ClNO ₃	$F_{000} = 512$
$M_r = 243.68$	$D_{\rm x} = 1.380 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 37 reflections
a = 6.5305 (8) Å	$\theta = 4.9 - 12.5^{\circ}$
b = 7.9857 (9) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 22.496 (3) Å	T = 295 (2) K
V = 1173.2 (3) Å ³	Prism, colorless
Z = 4	$0.4 \times 0.2 \times 0.1 \text{ mm}$
Data collection	
Bruker P4 diffractometer	$R_{\text{int}} = 0.026$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.7^{\circ}$
T = 295(2) K	$h = -7 \rightarrow 7$
ω scans	$k = -9 \rightarrow 9$
Absorption correction: none	<i>l</i> = −27→27
2581 measured reflections	3 standard reflections
2172 independent reflections	every 97 reflections
1690 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.005P)^2 + 0.4P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
2172 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
147 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 880 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.09 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.01956 (18)	-0.12260 (10)	0.00675 (4)	0.0884 (3)
01	0.3998 (2)	0.56562 (19)	0.16726 (7)	0.0425 (4)
O2	0.2117 (3)	1.0211 (2)	0.23361 (8)	0.0482 (5)
H2C	0.2839	1.1049	0.2316	0.058*
O3	0.5280 (3)	0.7894 (2)	0.25924 (7)	0.0477 (4)
H3B	0.5420	0.8705	0.2812	0.057*
N1	0.0604 (3)	0.4754 (3)	0.16049 (9)	0.0495 (6)
H1B	-0.0305	0.4823	0.1916	0.059*
C1	0.1909 (4)	0.6147 (3)	0.15314 (11)	0.0412 (6)
H1A	0.1850	0.6517	0.1116	0.049*
C2	0.1280 (4)	0.7577 (3)	0.19294 (12)	0.0457 (6)
H2A	0.1197	0.7179	0.2336	0.055*
H2B	-0.0071	0.7960	0.1813	0.055*
C3	0.2759 (4)	0.9032 (3)	0.19013 (10)	0.0392 (6)
H3A	0.2653	0.9554	0.1508	0.047*
C4	0.4948 (4)	0.8459 (3)	0.19940 (10)	0.0412 (6)
H4A	0.5884	0.9386	0.1906	0.049*

supplementary materials

C5	0.5384 (4)	0.7017 (3)	0.15789 (11)	0.0451 (6)
H5A	0.5270	0.7400	0.1171	0.054*
H5B	0.6776	0.6631	0.1641	0.054*
C6	0.0505 (4)	0.3402 (3)	0.12239 (11)	0.0450 (6)
C7	0.2014 (5)	0.3069 (4)	0.08000 (12)	0.0549 (7)
H7A	0.3118	0.3797	0.0761	0.066*
C8	0.1893 (5)	0.1674 (4)	0.04379 (12)	0.0591 (8)
H8A	0.2906	0.1472	0.0156	0.071*
C9	0.0287 (6)	0.0594 (3)	0.04936 (11)	0.0567 (8)
C10	-0.1245 (5)	0.0904 (4)	0.08970 (12)	0.0580 (8)
H10A	-0.2348	0.0172	0.0928	0.070*
C11	-0.1145 (5)	0.2305 (3)	0.12566 (12)	0.0527 (7)
H11A	-0.2198	0.2518	0.1525	0.063*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1371 (9)	0.0575 (4)	0.0707 (5)	0.0048 (6)	-0.0236 (6)	-0.0194 (4)
01	0.0405 (9)	0.0404 (9)	0.0464 (9)	-0.0016 (8)	-0.0010 (8)	-0.0021 (8)
O2	0.0471 (11)	0.0378 (10)	0.0595 (10)	-0.0028 (9)	0.0080 (9)	-0.0056 (9)
O3	0.0561 (11)	0.0442 (9)	0.0429 (9)	0.0035 (10)	-0.0106 (9)	-0.0058 (8)
N1	0.0488 (13)	0.0482 (12)	0.0515 (12)	-0.0157 (11)	0.0108 (11)	-0.0106 (11)
C1	0.0396 (13)	0.0424 (13)	0.0417 (13)	-0.0043 (12)	-0.0045 (11)	0.0018 (12)
C2	0.0380 (14)	0.0423 (14)	0.0568 (15)	-0.0025 (11)	-0.0008 (12)	-0.0025 (13)
C3	0.0419 (14)	0.0359 (13)	0.0399 (12)	0.0022 (11)	-0.0002 (11)	0.0037 (11)
C4	0.0392 (14)	0.0423 (13)	0.0422 (12)	-0.0042 (12)	0.0011 (11)	0.0017 (10)
C5	0.0415 (14)	0.0480 (13)	0.0457 (13)	-0.0077 (13)	0.0025 (12)	-0.0025 (12)
C6	0.0501 (15)	0.0422 (13)	0.0427 (13)	-0.0043 (13)	-0.0031 (12)	0.0007 (11)
C7	0.0566 (17)	0.0569 (17)	0.0513 (15)	-0.0107 (16)	0.0078 (15)	-0.0060 (14)
C8	0.073 (2)	0.0582 (18)	0.0464 (15)	0.0010 (18)	0.0044 (15)	-0.0038 (14)
C9	0.085 (2)	0.0446 (14)	0.0408 (13)	0.0014 (17)	-0.0127 (16)	-0.0011 (12)
C10	0.0685 (19)	0.0525 (17)	0.0529 (16)	-0.0179 (16)	-0.0067 (15)	0.0033 (15)
C11	0.0533 (16)	0.0551 (17)	0.0497 (15)	-0.0173 (15)	0.0028 (14)	-0.0034 (14)

Geometric parameters (Å, °)

1.742 (3)	С3—НЗА	0.9800
1.430 (3)	C4—C5	1.510 (3)
1.454 (3)	C4—H4A	0.9800
1.421 (3)	С5—Н5А	0.9700
0.8200	С5—Н5В	0.9700
1.436 (3)	C6—C11	1.391 (4)
0.8200	C6—C7	1.397 (4)
1.380 (3)	С7—С8	1.382 (4)
1.411 (3)	С7—Н7А	0.9300
0.9195	C8—C9	1.364 (4)
1.508 (3)	C8—H8A	0.9300
0.9800	C9—C10	1.373 (4)
1.512 (3)	C10—C11	1.382 (4)
	1.742 (3) 1.430 (3) 1.454 (3) 1.421 (3) 0.8200 1.436 (3) 0.8200 1.380 (3) 1.411 (3) 0.9195 1.508 (3) 0.9800 1.512 (3)	1.742 (3) $C3$ —H3A $1.430 (3)$ $C4$ —C5 $1.430 (3)$ $C4$ —H4A $1.421 (3)$ $C5$ —H5A 0.8200 $C5$ —H5B $1.436 (3)$ $C6$ —C11 0.8200 $C6$ —C7 $1.380 (3)$ $C7$ —C8 $1.411 (3)$ $C7$ —H7A 0.9195 $C8$ —C9 $1.508 (3)$ $C9$ —C10 $1.512 (3)$ $C10$ —C11

C2 H2A	0.0700	C10 H10A	0.0200
C2—H2A	0.9700		0.9300
C2—H2B	0.9700	СП—нпа	0.9300
C3—C4	1.515 (3)		
C5—O1—C1	110.91 (18)	O3—C4—H4A	109.4
C3—O2—H2C	109.5	C5—C4—H4A	109.4
С4—О3—Н3В	109.5	C3—C4—H4A	109.4
C6—N1—C1	124.9 (2)	O1—C5—C4	111.7 (2)
C6—N1—H1B	119.3	O1—C5—H5A	109.3
C1—N1—H1B	115.6	C4—C5—H5A	109.3
N1-C1-O1	109.19 (19)	O1—C5—H5B	109.3
N1—C1—C2	111.3 (2)	C4—C5—H5B	109.3
O1—C1—C2	109.23 (19)	H5A—C5—H5B	107.9
N1—C1—H1A	109.0	N1—C6—C11	119.7 (2)
O1—C1—H1A	109.0	N1—C6—C7	122.7 (2)
C2—C1—H1A	109.0	C11—C6—C7	117.6 (2)
C1—C2—C3	112.6 (2)	C8—C7—C6	121.0 (3)
C1—C2—H2A	109.1	С8—С7—Н7А	119.5
C3—C2—H2A	109.1	С6—С7—Н7А	119.5
C1—C2—H2B	109.1	C9—C8—C7	120.0 (3)
C3—C2—H2B	109.1	С9—С8—Н8А	120.0
H2A—C2—H2B	107.8	С7—С8—Н8А	120.0
O2—C3—C2	107.00 (19)	C8—C9—C10	120.5 (3)
O2—C3—C4	112.6 (2)	C8—C9—Cl1	120.2 (2)
C2—C3—C4	111.4 (2)	C10-C9-Cl1	119.3 (2)
O2—C3—H3A	108.6	C9—C10—C11	119.9 (3)
С2—С3—НЗА	108.6	C9—C10—H10A	120.1
С4—С3—НЗА	108.6	C11-C10-H10A	120.1
O3—C4—C5	108.14 (19)	C10-C11-C6	121.0 (3)
O3—C4—C3	111.5 (2)	C10-C11-H11A	119.5
C5—C4—C3	108.8 (2)	С6—С11—Н11А	119.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O2—H2C···O3 ⁱ	0.82	1.93	2.739 (2)	170
O3—H3B···O1 ⁱ	0.82	1.98	2.797 (2)	175
N1—H1B···O2 ⁱⁱ	0.92	2.08	2.994 (3)	173

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2.

